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I.  INTRODUCTION 
  

The base for all experimental and theoretical 
evaluation of electrostatic precipitator (ESP) 
performance is the Deutsch equation [1-3]: 
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At ideal conditions Deutsch’ equation relates the 
collection efficiency, η, of the ESP to the 
particle migration velocity, w, and the specific 
collecting area A/Q (square meters of ESP 
collecting area divided by the treated gas 
volume in cubic meters per second). One of the 
main assumptions is that all particles are 
identical, which leads to severe limitations of 
the usefulness of the equation for most practical 
cases. For mono-disperse (uniform) particle size 
distributions, or at least a very narrow width of 
the distribution, Deutsch’ equation is applicable, 
while it quickly loose its validity as the particle 
size distribution widens. This was explicitly 
demonstrated in a paper by Allander and Matts 
in 1957 [4]. 

Since Deutsch’ equation is still a reasonable 
approximation for the individual size fractions 
the total ESP collection efficiency for any size 

distribution, γ(D), can in principle be obtained 
by integration over the entire particle size range 
[3-4]: 
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This, however, requires detailed knowledge of 
the exact particle size distribution, which is 
rarely the case. Furthermore the functional 
dependence of migration velocity as function of 
particle diameter, i.e. w(D), must be inserted. 
Should the size distribution be known 
integration of Eq. (2) is readily performed by 
numerical methods, but it typically denies an 
explicit analytic expression for the relation 
between collection efficiency, specific 
collecting area and migration velocity. 

In 1964 Matts and Öhnfeldt presented a 
modified Deutsch formula for precipitator 
sizing, which despite its simplicity and only two 
fitting parameters turned out to be very useful 
for describing the ESP efficiency as function of 
specific collecting area [5]. The Matts-Öhnfeldt 
equation introduces the modified migration 
velocity, wk, and a shape- or dampening 
parameter k , 
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Via the k-parameter, which is typically below 
one, the equation simulates the increased 
difficulty to collect remaining dust as the 
precipitator becomes larger to reach very high 
collection efficiencies. This phenomenon is 
typically due to decreasing average particle size, 
or more general that the most difficult-to-catch 
particles survives the longest in the ESP and are 
enriched. For fly ash precipitation after coal-
fired boilers the value of k = 0.5 has turned out 
to a reasonably good approximation for a wide 
variety of fuel and process conditions. For the 
special case of a very narrow, or even mono-
disperse, particle size distribution the value of k 
can under ideal conditions approach one, and 
the Matts-Öhnfeldt formula collapses to the 
ordinary Deutsch equation. 

In this paper some observations on the 
Matts-Öhnfeldt formula of general interest will 
be pointed out and described. After looking at 
the differential equations that result in the 
Deutsch and Matts-Öhnfeldt formulas (Sec. II), 
three different properties of the Matts-Öhnfeldt 
equation are discussed. In Sec. III it is noted that 
the Matts-Öhnfeldt formula is a Weibull 
distribution with concentration of particulate 
matter as a function of treatment time. This 
renders some further insight and credibility to 
the Matts-Öhnfeldt formula, on account of the 
very wide use of Weibull distributions in many 
scientific areas. In Sec. IV the questions is asked 
whether there exist a particle size distribution 
that will result in the Matts-Öhnfeldt equation if 
integrated over all particle sizes using Deutsch 
equation for the fractional collection efficiency. 
Relatively simple mathematical considerations 
show that this is indeed the case, at least for the 
common case of k = 0.5, and that the resulting 
explicit expression for the size distribution 
reasonably well resembles a log-normal 
distribution in certain ranges. Finally, in Sec. V, 
the theoretical basis for k-values larger than one 
in the Matts-Öhnfeldt formula is discussed. An 
actual example with k > 1 is provided in the 
form of precipitation of oil soot after a small oil-
fired boiler. 

 
II. DIFFERENTIAL EQUATIONS FOR THE 

DEUTSCH AND MATTS-ÖHNFELDT 
FORMULAS OF ESP EFFICIENCY 

 

 Detailed derivations of the ordinary Deutsch 
equation are of course provided in the literature, 

for example in Harry White’s book [3]. A 
simple derivation of Deutsch equation can for 
example proceed as follows.  

Consider a thin slice of the dust laden gas 
inside the ESP, covering the entire cross-section 
and moving from the inlet towards the outlet at 
velocity v. No gas or particles are exchanged 
between adjacent slices, but it is assumed that 
full turbulent mixing takes place within each 
slice, leading to random motion of the particles 
perpendicular to the main gas flow direction and 
rapid loss of memory of their previous position. 
It is furthermore assumed that there is no 
inherent time dependence in the precipitation 
process and no explicit or implicit variation 
along the length of the ESP. A particle in the 
slice then has constant probability per time unit 
to be collected, and the decrease in particle 
concentration due to precipitation becomes 
proportional to the concentration itself: 
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Here f   is a constant and C(t) is the 
concentration of particles suspended in the flue 
gas. The constant f  has dimension s-1, and may 
be viewed as a “precipitation probability per 
time unit”, such that f dt is the fraction of 
particles separated from the flue gas in the time 
interval dt. Solving Eq. (4) with the boundary 
condition at the ESP inlet t = 0 and C(0) = Cin, 
we obtain the solution: 
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Although expressed in terms of treatment 

time in the ESP, Eq. (5) is identical to Deutsch’ 
equation, Eq. (1). To go from treatment time to 
position along the length of the ESP we can 
replace t with x/v. Furthermore, the gas velocity 
through the ESP, v, is given by Q/Ω, where Q is 
the volumetric flow rate and Ω is the ESP cross-
section. At the ESP outlet, at position x = L, the 
total treatment time is T = LΩ/Q = V/Q, where V 
is the volume of the ESP. Inserting into Eq. (5) 
we get: 
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We remember that f dt is the fraction of particles 
collected in any of the “gas slices” during the 
time interval dt.  This fraction is the portion of 
particles that are sufficiently close to the 
collecting electrode surface to be precipitated. 
With a particle migration velocity, w, towards 
the collecting surface the fraction of particles 
that are precipitated is Awdt/V (the thickness of 
the slice in relation to the entire length of the 
ESP cancels). Identifying f = Aw/V and 
substituting into Eq. (6) we obtain the usual 
Deutsch equation in terms of specific collecting 
area, Eq. (1). 

 One of the main assumptions in the analysis 
above, arriving at Deutsch’ equation, is that the 
probability of precipitation, f, (or migration 
velocity w) is constant in time and space. Due to 
a non-uniform particle size distribution and size 
dependent migration velocity this is not the 
actual case. We can lift this restriction with an 
ad hoc approach by changing the constant f to a 
function with explicit time dependence f → f(t). 
We then obtain the differential equation: 
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To get a simple differential equation we take f(t) 
to be of the form b tα, which can cover both 
increasing and decreasing collection rates by the 
choice of the parameter α. For the special case 
α = 0 and with the constant b = f, we arrive 
again at a constant collection probability and the 
differential equation leading to the Deutsch 
formula. The separable differential equation 
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is readily integrated. For −1 < α < ∞ and b > 0, 
and denoting again the concentration at t = 0 
(i.e. at the ESP inlet) by Cin, we obtain the 
solution: 
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We may rewrite Eq. (9) by the substitutions 

k = α + 1 and fk = (b/(α + 1))1/(α+1) to get the more 
familiar expression: 
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This is of course the Matts-Öhnfeldt equation 
expressed in terms of treatment time. As before, 
we may replace time with position by dividing 
with the net gas flow velocity and evaluating the 
equation at the ESP outlet x = L. Analog with 
Eq. (6) the outlet particle concentration is then 
expressed in terms of the ESP volume: 

 

( )[ ]k

kinout QVfCCL /exp)C( −== .  (11) 

 
By defining a new constant, wk = fkV/A, we 
retrieve the conventional form of the Matts-
Öhnfeldt equation. Since wk has the dimension 
m/s, we may call it “modified migration 
velocity”, but it no longer represents the actual 
speed of the particles towards the collecting 
surface, as when deriving Deutsch’ equation. 

A point of notice during the “derivation” of 
Matts’ and Öhnfeldt’s modified Deutsch 
equation above concerns the value of the 
parameter α. When selecting a value of α in the 
range -1 < α < 0, the value of f(t) in Eq. (7) is 
infinite at t = 0. While this may seem somewhat 
awkward it is mathematically of no consequence 
since f(t) = b tα has a finite integral in the range 
0 to T when α is larger than −1. Also from 
physical point of view it is not completely 
unrealistic since there is an immediate sizable 
fallout of coarse dust in the first few inches of 
the ESP, even before reaching the corona 
region. Another point that deserves some 
elaboration is the selection of a function, f(t), 
with explicit time-dependence in the model. It 
should be clear that this is not formally correct, 
since the real dependence on treatment time or 
position is due to an underlying change in 
concentration, such that f → f(C(t)) would be 
more appropriate. Nevertheless, the use of the 
form f(t) has it merits, and is conceptually 
simple and has some pedagogical value. The 
approach where f(C(t)) is used in lieu of f(t) in 
Eq. (7) is discussed in an Appendix. 
 

III. MATTS-ÖHNFELDT EQUATION AS 
WEIBULL DISTRIBUTION 

  

In 1951 the mathematician Waloddi Weibull 
presented and described a statistical distribution 
that subsequently became known as the Weibull 



 

 

distribution [6]. First he noted that the 
cumulative distribution function for any 
parameter of interest may be written in the form 
F(x) = 1 − exp[-ϕ(x)], where F(x) is the fraction 
of the population having a parameter value 
lower than x. This is a suitable form of writing 
since the multiplication of probabilities of 
random or very complex events in a process are 
transformed to summations in the exponent. The 
only general conditions that ϕ(x) has to satisfy is 
to be zero up to some value xu and thereafter 
strictly non-decreasing. By taking the simplest 
class of functions that satisfies this criteria, 
(x−xu)

m/x0, Weibull presented the distribution 
function 
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 In his 1951 paper Weibull immediately 

went on to show the usefulness of the proposed 
statistical distribution by fitting the measured 
data for a number of examples, including fiber 
strength of cotton, fatigue life of steel and 
particle size of fly ash. Nowadays the Weibull 
distribution is one of the most widely used 
distribution functions, described in most 
mathematical handbooks and included in 
numerous software tools. Several recent books 
deals with the Weibull distribution in great 
detail [7-9]. The classical application of the 
Weibull distribution is in survival and reliability 
analysis, but it has also turned out to be useful 
for such disparate applications as dielectric 
breakdown voltages, pitting corrosion, thermo-
luminescence glow peaks, wind speed 
distributions, rainfall intensity, cancer clinical 
trial data, stock returns, sampling plans in 
quality control, inventory lead times, warranty 
periods, tree diameter data and earthquake 
occurrences [9]. 

In addition to all the applications listed in 
Refs. 7-9, the Weibull distribution is obviously 
also suitable to describe the collection efficiency 
of dust in an ESP, since it is in fact identical to 
the Matts-Öhnfeldt equation. More precisely, it 
replicates the Matts-Öhnfeldt equation with 
xu = 0, m = k and x0 = wk

-k. The special case of 
xu = 0 is normally referred to as the two-
parameter Weibull distribution and is a very 
common case, especially for time-dependent 
processes where it is possible to identify a well-

defined starting time. The two-parameter 
Weibull distribution is plotted in Fig. 1 for some 
values of the shape parameter m. 

The observation that the Matts-Öhnfeldt 
equation is nothing but a Weibull distribution 
applied to the mass concentration of dust inside 
an ESP is by no means of fundamental 
character. The Weibull distribution as well as 
the Matts-Öhnfeldt equation were already in 
their original papers (Ref. 5 and Ref. 6 
respectively) clearly stated to be nothing more 
than practical tools to fit and extrapolate 
experimental data. As such, however, they 
turned out to be extremely useful over the years. 
Due to the wide applicability of the Weibull 
distribution in so very many technical and 
scientific applications it does provide some 
justification for the Matts-Öhnfeldt formula as a 
high-level representation of the underlying 
complex precipitation process. Since the 
Weibull distribution is extremely well-
investigated and described in the literature, it is 
likely that some of the methods developed for 
its analysis may also turn out useful in the study 
of electrostatic precipitation. 

A couple of previous applications of the 
Weibull distribution deserve special comments 
since they are in certain aspects somewhat 
similar to the electrostatic precipitation 
mechanism. One scientific discipline where the 
Weibull distribution is extensively used to 
model an inherently complex phenomenon is the 
in vitro dissolution of drugs [10-11]. Exactly as 
for electrostatic precipitation it is the matter of a 
mass transfer process, where a changing particle 
size over time is one of the dominating factors 
for the rate of transfer. Also the mass transfer of 
water in food drying and rehydration processes 
has turned out to be well described by the 

 
Fig. 1. Two-parameter Weibull distribution functions 
for different values of the shape parameter m and 
normalized scale parameter x0. 



 

 

Weibull distribution [12-14]. Finally, rate 
equations for the yield of heterogeneous 
chemical reactions have also been expressed as 
Weibull distributions [15]. 

 

IV. RELATION BETWEEN PARTICLE SIZE 
DISTRIBUTION AND MODIFIED 

MIGRATION VELOCITY 
  

Typically the dust emanating from various 
processes, such as e.g. combustion in a coal-
fired boiler, is assumed to have a particle size 
distribution that is approximately log-normal 
[3]. In reality combustion processes often result 
in bimodal or multimodal size distributions, 
reflecting the various generation mechanisms of 
particulate matter in the flame zone. The log-
normal distribution may still be used for the 
individual modes of the distribution, and 
certainly for the coarsest mode that contains a 
very large percentage of the total particle mass 
in the flue gas. This coarsest mode of particular 
matter, where field charging is the dominating 
charging mechanism in the ESP, was the focus 
of Matts and Öhnfeldt when they developed the 
modified Deutsch equation. In the field charging 
regime the electrical charge, and hence the 
driving force, for a particle is proportional to its 
surface area. The theoretical formula for the 
charge together with the formula for the Stoke’s 
drag force result in the familiar expression for 
the migration velocity in the field charging 
regime [3-4]: 
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With the proportionality between migration 

velocity and particle diameter the integration 
over all sizes to obtain the collection efficiency 
according to Eq. (2) becomes more tractable. 
Combining Eq. (2) and Eq. (13) we obtain 
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where the introduced factor s includes A/Q and 
the coefficients of Eq. (13). For the case when 
γ(D) is the log-normal distribution the integral 
in Eq. (14) has no analytical solution but can be 
computed numerically, which was done in Refs. 
4-5. By plotting such numerical solutions Matts 

and Öhnfeldt could demonstrate that their 
modified Deutsch equation gave a qualitatively 
similar behaviour [5]. Good agreement with 
experimental data from coal-fired plants was 
obtained with a value of the parameter k equal 
to 0.5. 

Here we shall pose the opposite question of 
the observed good agreement between the 
Matts-Öhnfeldt equation and integration of the 
log-normal distribution in the field charging 
regime: Does there exist a particle size 
distribution (possibly similar to the log-normal 
distribution) that gives the Matts-Öhnfeldt 
formula when integrated according to Eq. (14)? 
An observation that turns out helpful to answer 
this question, and which may also be of more 
general use, is that the integral in Eq. (14) is the 
definition of the Laplace transform of γ(D). 
Thus the rules for Laplace transforms and 
tabulated transform pairs may be generally used 
to analyse the total ESP efficiency as long as the 
charging mechanism is dominated by field 
charging (i.e. the migration velocity is 
proportional to particle diameter). If we limit 
our self to the special case of the Matts-Öhnfeldt 
equation where k = 0.5, which is one of the most 
used values of the k-parameter, we find in 
ordinary tables of Laplace transforms: 
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In other words the particle size distribution 
γ(D) = √(a2/4πD3) exp[-a2/4D] results in a total 
collection efficiency identical to the Matts-
Öhnfeldt formula, with k = 0.5 and wk = 
a2ε(ε+2)-1ε0E0Ep/µ.  It is now of interest to plot 

 
Fig. 2. Particle size distribution that results in the 
Matts-Öhnfeldt formula (a2

 = 115 µm), compared to 
the log-normal distribution from Ref. 5. 



 

 

this particle size distribution for various values 
of its only parameter, a. The result may be done 
as an exercise and reveals that the shape of the 
size distribution function is quite reasonable. In 
Fig. 2 it is plotted for the case a2 = 115 µm, for 
which it is reasonably similar to the particular 
log-normal distribution that Matts and Öhnfeldt 
used as example in Ref. 5 (also shown in 
Fig. 2). 
 

V.  ELECTROSTATIC PRECIPITATION 
WITH  k-VALUE LARGER THAN ONE 

  

 Often in the literature it is stated or 
implicitly understood that the k-parameter in the 
Matts-Öhnfeldt modified Deutsch equation is 
below one or, for a virtually mono-disperse size 
distribution, equal to one [16-17]. While it was 
shown above that such a statement has 
theoretical justification under ideal conditions 
and with a particle size distribution where field 
charging is dominating, it will here be discussed 
why there are cases with k > 1. The physical 
meaning of a k-value larger than one is that the 
precipitation rate or efficiency increases with 
the length of the precipitator. At a first glance 
this is counter-intuitive, considering the 
fundamental principle that the easiest-to-collect 
particles are precipitated first, enriching the 
most difficult particles towards the exit of the 
ESP. Nevertheless there are theoretical 
justifications as well as field measurements that 
support increasing collecting rate with 
increasing treatment time, i.e. efficiencies 
governed by the Matts-Öhnfeldt formula with a 
k-parameter larger than one. 
 Consider a particle size distribution that is 
very narrow and located to a large extent in the 
sub-micron range. This could for example be the 
very fine soot from combustion of oil or 
Orimulsion in a boiler or large diesel engine. 
For such a size distribution the difference in 
migration velocity between different particles is 
quite small since it is narrow and located close 
to the minima of the fractional collection 
efficiency. Thus, when the flue gas is 
progressively cleaned as it passes through the 
ESP, there is very limited enrichment of 
particles that are more difficult than average to 
precipitate. This would in an ideal situation 
correspond to a k-value very close to 1. In 
reality, however, there are some factors that 
explicitly depend on the position or treatment 

time in the ESP, such as uneven gas distribution 
and corona suppression. These become less 
pronounced as the gas moves through the ESP. 

It is well known that the gas flow profile of 
the ESP cross-section becomes more uniform as 
the flue gas moves through the ESP. A more 
even gas flow improves the overall collection 
efficiency (which can be interpreted as a higher 
migration velocity) and also reduces non-ideal 
effects such as sneakage and re-entrainment of 
dust. Another important practical problem, 
especially for dust with a high fraction of fines, 
is the corona suppression, or space charge effect 
[18-19]. Due to the very large surface area of 
the suspended dust particles their saturation 
charge is high enough to quench the corona 
current to levels much lower than in a dust free 
environment. Both the lower current and the fact 
that the particles cannot reach their saturation 
charge before a large fraction of the dust has 
been collected, leads to lower migration velocity 
in the front of the ESP compared to the rear 
sections. Even aside from the space charge 
effect it must be considered that sub-micron 
particles are dominated by the diffusion 
charging mechanism, which requires longer 
time to reach saturation charge. Thus, as 
opposed to the field charging where the particles 
can reach saturation charge in less than a 
second, sub-micron particles increase their 
electrical charge basically all the way through 
the ESP [3]. 

The above discussion imply that there are 
several possible cases where a very limited 
enrichment of difficult-to-catch particles can be 
dominated by factors that benefit from increased 
ESP length and increased treatment time. This 
translates to a migration velocity that effectively 
increases with increasing treatment time, i.e. a 
modified migration velocity according to the 
Matts-Öhnfeldt equation where the k-parameter 
is larger than one. The cases where this can be 
expected to occur are processes generating dust 
in a narrow size range with a lot of sub-micron 
particles. The precipitated dust should also have 
fairly low resistivity, so that no increase in 
back-corona propensity takes place in the 
downstream sections of the ESP. One actual 
example is provided below in the form of a pilot 
ESP treating flue gas from a small oil-fired 
boiler.  

In 2005 Alstom installed an ESP based on 
the so-called ERDEC design downstream a 



 

 

12 MWth auxiliary oil-fired boiler at the 
Karlshamn Kraft (KKAB) power plant in 
Sweden [20]. The layout of the electrodes in the 
ERDEC design is different compared to a 
normal ESP. Being of a cross-flow design, the 
flue gas passes several modules consisting of 
discharge electrodes sandwiched between an 
upstream and downstream collecting electrode 
system. Both the saw tooth shaped discharge 
electrodes and the flat bars that constitute the 
collecting system are oriented in the same 
direction as the gas flow. This means that the 
electric field lines and the corona current are 
parallel to the gas flow direction, as opposed to 
the conventional duct-type ESP where they are 
basically perpendicular to the gas flow. The 
electrode layout inside the ERDEC design ESP 
at KKAB is shown in Fig. 3. Each of the two 
fields consists of three modules having one front 
and one rear collecting system with the 
discharge electrodes in between.  

While the ERDEC design ESP at KKAB 
was a commercial project with standard 
contracts and requirements, it was also a demo 
installation where some pilot tests were 
performed in cooperation with the customer. 
The results from one of the test measurements 
performed at KKAB are presented in Table I. 
For this particular test the boiler was firing 
heavy fuel oil with a sulphur content of 2.1%. 
The centrifugal burner in the boiler had just 

been cleaned and overhauled, resulting in very 
low particulate concentration in the flue gas. 
During the entire test day the inlet dust load to 
the ESP was very close to 15 mg/Nm3 with  
only minor fluctuations. Despite the low 
concentration the ESP experienced significant 
corona suppression, as can be appreciated from 
the difference in current input between the first 
and second field, shown in Table I (tests 1-3). 
This is a certain sign that the particles generated 
in the boiler are mainly sub-micron, or 
otherwise the low concentration would never 
result in noticeable corona suppression. With 
both field 1 and field 2 in operation the average 
dust emission at the ESP outlet was 
1.7 mg/Nm3. In the last test the first field was 
put out of service, resulting in an increase in 
emission to 7.0 mg/Nm3 (only one isolated 
measurement). Since the gas flow was kept 
constant during the entire measurement day, 
switching off one field corresponds to reducing 
the specific collecting area (and treatment time) 
to half. 

With two operating conditions at different 
specific collecting area it is possible to fit the 
two parameters wk and k of the Matts-Öhnfeldt 
equation. Due to the unconventional electrode 
configuration of the ERDEC design, the 
definition of total collecting area is not as 
straightforward as in a conventional ESP. It may 
be defined in several ways, but in the following 
analysis we shall define it simply as the sum of 
the actual area of all the flat bars in the 
collecting frames. Another definition could be 
twice the ESP cross section times the number of 
discharge electrode frames, or the performance 
equation could be based on treatment time in the 
electric field. In the end the definition of 
collecting area is rather unimportant as it only 
represent a scaling and redefinition of the 
modified migration velocity, while leaving the 
k-parameter unchanged. With the collecting area 
defined as the total flat bar area, operation with 

  TABLE I 
Gravimetric measurement results at the inlet and outlet 

of the ERDEC design ESP at KKAB power plant.  
 

Test ESP current Inlet dust Outlet dust 

1   27 mA / 79 mA 15.0 mg/Nm3 1.6 mg/Nm3 

2   29 mA / 70 mA 15.6 mg/Nm3 1.3 mg/Nm3 

3 30 mA / 68 mA 15.5 mg/Nm3 2.3 mg/Nm3 

4   0 mA / 37 mA 14.7 mg/Nm3 7.0 mg/Nm3 

 

 
Fig. 3. Drawing of the internals of the cross flow 
Erdec-design ESP at KKAB power plant. The direction 
of the gas flow is indicated by the green arrows. 



 

 

one and two fields represented a specific 
collecting area of 12.4 and 24.8 m2/m3/s, 
respectively. Fitting the measured collection 
efficiencies to the Matts-Öhnfeldt formula 
results in a modified migration velocity, wk, of 
6.64 cm/s, with the parameter k being 1.56. 

The collection efficiency according to the 
Matts-Öhnfeldt equation with k = 1.56 and 
wk = 6.64 cm/s is plotted in Fig. 4 together with 
the measured results. For comparison also 
curves for the Matts-Öhnfeldt equation with 
k = 1 and k = 0.5 are included. The 
corresponding values of wk (8.56 and 19.2 cm/s 
respectively) have been selected to match the 
measured efficiency with two fields in 
operation. It is clearly seen that only the case 
with k > 1 is able to correctly extrapolate the 
trend to the situation when A/Q is decreased to 
half due to one field out of service. 
 

VI.  CONCLUSION 
  

 The Matts-Öhnfeldt equation has proven to 
be a useful practical tool for ESP sizing and 
performance evaluation for more than 50 years. 
Despite only two parameters it can accurately fit 
and extrapolate experimental data of ESP 
collection efficiency from a wide variety of 
process condition and dust types. The same type 
of equation, universally referred to as the 
Weibull distribution, has also turned out to be 
able to fit data from a multitude of scientific 
problems. In the present paper some further 
evidence on the soundness and flexibility of the 
Matts-Öhnfeldt equation has been provided. 
Despite ever increasing capabilities of computer 
simulations it is believed that field experience 

from full-scale ESP installations and data from 
pilot investigations is still the most important 
source for predictions of the very complex 
process of electrostatic precipitation. As such, 
the Matts-Öhnfeldt equation still has its place as 
a simple and transparent expression for 
evaluation and sizing of ESP installations. 
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APPENDIX 

 

 As mentioned in Sec. II, a conceptually more 
appealing model to simulate the increasing 
difficulty to collect finer particles results if one 
considers the differential equation 

 

( ) )C()C(f
)C(

tt
dt

td
−= .    (A1) 

 
An equation like this means that the rate of 
precipitation depends on the remaining 
concentration of particles. The mechanism is 
that when the concentration reduces as time 
goes the character of the remaining particles has 
changed, affecting the precipitation rate. As in 
Sec. II we now limit the study to some simple 
functional relationship, which admits analytic 
solution. It may be assumed that the 
“coefficient” f(C(t)) will not vary within an 
extremely wide range, while C(t) itself will have 
some sort of exponential decay and vary within 
several orders of magnitude. Thus it is likely 
convenient to express the functional relationship 
f(C) on a logarithmic scale, and we may write: 

 

( ) )C())ln(C(f
)C(

tt
dt

td
−= .  (A2) 

 
Since the function f is anyhow not defined, the 
rewrite from (A1) to (A2) is so far done without 
loss of generality. Now, however, we will limit 
the analysis to a special form of functional 
relationship, namely: 

 

( ) ( )β)/)ln(C()C(f inCtat −= .  (A3) 

 
The selection of functional form is basically 
analog to what was done in Sec. II, and we have 
normalized the concentration to the inlet dust 
load, Cin. The minus sign makes the argument 
positive and strictly increasing when C(t) 
decreases. 

With the form f(C) according to Eq. (A3) the 
separable differential equation (A1) becomes: 
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The integral to the left has a simple analytical 
solution for β ≠ 1: 
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Using (A5) in Eq. (A4) and noting that the 

lower integration limits on both sides vanish, the 
following is obtained: 

 

taCin )1())ln(C/( 1 ββ −=− − .   (A6) 

 
Raising to the power 1/(1-β) followed by 
exponentiation, we get the final expression: 

 

[ ])1/(1))1((expC ββ −−−= taCin .  (A7) 

 
With a > 0 and β < 1, and expressing it in terms 
of A/Q in the same way as in Sec. II, this is the 
Matts-Öhnfeldt equation. Identification gives 
k = 1/(1-β) and wk = a(1-β)V/A. 


